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Linearized theory is used to study the unsteady flow in a supersonic cascade with 
in-passage shock waves. We use the Wiener-Hopf technique to obtain a closed-form 
analytical solution for the supersonic region. To obtain a solution for the rotational 
flow in the subsonic region we must solve an infinite set of linear algebraic equations. 
The analysis shows that it is possible to correlate quantitatively the oscillatory shock 
motion with the Kutta condition a t  the trailing edges of the blades. This feature allows 
us to account for the effect of shock motion on the stability of the cascade. 

Unlike the theory for a completely supersonic flow, the present study predicts the 
occurrence of supersonic bending ff utter. It therefore provides a possible explanation 
for the bending flutter that has recently been detected in aircraft-engine compressors 
at  higher blade loadings. 

1. Introduction 
Blade flutter in the fan and compressor stages is one of the most serious problems 

encountered in the development of modern gas-turbine engines. The major obstacles 
to predicting this phenomenon, which often occurs when the blades are unstalled and 
operating supersonically, are primarily fluid mechanical in nature. It is therefore 
important to understand as well as predict the unsteady supersonic flows in rotating 
blade rows. The present analysis is directed towards these goals. 

As is usually done we represent an incremental annulus of the blade row by a 
rectilinear two-dimensional cascade. While most modern fans and compressors operate 
with supersonic flow velocities relative to the blades, the axial velocities entering the 
blade row are usually subsonic. Under these conditions the leading-edge Mach waves 
will extend upstream of the cascade and there will be no region of undisturbed flow 
in front of the blade row (as there is for an isolated airfoil). This is the so-called 
‘subsonic leading edge locus problem’. Moreover, there will be st,rong (in the sense 
that the flow goes from supersonic to subsonic) nearly normal shocks in the blade 
passage over most of the range of operating conditions. These shocko are clearly 
detectable in the typical pressure contours for a supersonic fan rotor blade tip shown 
in figure 1 (Miller & Bailey 1971). Indeed it is this tip region which is known to be most 
critical from the point of view of blade flutter. It should be noted that, as indicated 
in the figure, the blade sections have only very small thickness and camber near their 
tips. 
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FIGURE 1. Static-pressure contours for rotor at 100% of design speed showing nearly normal 
in-passage shock. (Close spacing of contours is indicative of rapidly changing pressures.) From 
Miller & Bailey (1971). - I*.- Normal shock wave 
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FIGURE 2. Normal-shock configuration. 

In  order to predict the onset of flutter we allow the blades to undergo a small 
amplitude harmonic oscillation which superposes a small unsteady motion on an 
existing inviscid flow field that is steady relative to the blades. Since the blades are 
thin, it  is usual to assume that the steady motion deviates only slightly from a uniform 
flow. Hence both the steady and the unsteady flow are treated as small perturbations 
about a uniform ‘basic’ flow. A number of authors (Nagashima t Whitehead 1974; 
Kurosaka 1974; Verdon & McCune 1975; Goldstein 1975a,b; Verdon 1973; Brix & 
Platzer 1974) have treated the case where the ‘basic ’ flow is entirely supersonic. But 
since modern fans and compressors can operate a t  quite high relative tip Mach numbers 
(1.6 or even higher) the in-passage shock waves are usually strong enough that the 
mean flow is neither approximately uniform nor entirely supersonic. It is therefore 
desirable to choose a different ‘basic ’ flow about which to construct the perturbation 
analysis. This flow must, of course, itself satisfy the inviscid equations of motion. The 
advantage of using a uniform ‘basic’ flow is that it leads to equations that can be 
solves analytically (because they have constant coefficients). However, the ‘basic ’ 
flow depicted in figure 2 also has this property and still allows us to account for the 
fact that tbere are strong shock waves with a moderately high supersonic Mach 
numbers upstream and relatively low subsonic Mach numbers downstream. In  this 
figure the vertical lines represent the shock waves, across which the flow variables 
are determined by the Rankine-Hugoniot conditions for normal shocks.7 

result from the shock waves. 
-f In adopting this model we of course neglect the effects of any flow separation that might 
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FIGURE 3. Dimensionless cascade configuration. (a) Normal shock at leading edge. 

(a) Normal shock at trailing edge. 

The present model is somewhat analogous to the one used first by Coupry & Piazzoli 
(1958) and later by Eckhaus (1959) to predict control-surface buzz on isolated airfoils. 
However, models of this type clearly provide a much better description of the actual 
flow in a fan or compressor than they do for an isolated airfoil. 

Now, as is well known, the unsteady and steady-state aerodynamics decouple in 
the linearized approximation, so that the unsteady flow can be calculated indepen- 
dently of the steady flow perturbations. In  fact, since the thickness, camber and mean 
angle of attack of the blades can be shown to influence only the steady flow pertur- 
bations, we can calculate the unsteady motion by replacing the blades by a set of zero- 
thickness flat plates at  zero mean incidence such as the ones shown in figure 3. 

The fluid is assumed to be an inviscid non-heat-conducting ideal gas with constant 
specific heats both upstream and downstream of the shock waves. The flow ahead of 
the shock waves is assumed to be irrotational and isentropic. However, the shock 
motion can cause the generation of vorticity and entropy gradients in the downstream 
region. 

The problem is formulated in $2,  where the governing equations and boundary 
conditions are deduced. These include an appropriate set of shock conditions to 
connect the flow in the subsonic and supersonic regions. 

Since disturbances cannot propagate upstream in a supersonic flow, it is easy to 
see from figure 3(a )  that the motion downstream of the shock cannot influence the 
upstream region. We take advantage of this fact by replacing the subsonic region by 
a convenient continuation of the supersonic flow. This allows us to obtain, in $3.1, 
a closed-form analytical solution for the supersonic region ahead of the shock waves 
(i.e. we replace the blades by a set of semi-infinite flat plates that extend to infinity 
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FIQVRE 4. Equivalent semi-infinite cascade problem for supersonic region. 

downstream (see figure 4) and obtain the solution by the Wiener-Hopf technique). 
This solution is used in conjunction with the shock jump conditions deduced in $ 2  
to calculate the pressure and axial velocity on the subsonic side of the shock. These 
quantities, together with those specified on the blade surface, are just sufficient to 
determine the flow in the subsonic region. 

By considering an oscillating cascade of semi-infinite flat plates that extend to 
infinity in the upstream direction, we are able to construct, in $3.2, a, solution that 
satisfies all the boundary conditions in the subsonic region except the ones on the 
shock waves. This solution has an arbitrarily specified downstream-propagating 
acoustic field within the cascade. Its composition is determined by requiring that the 
solution also satisfies the shock boundary conditions. This involves solving an infinite 
set of algebraic equations for the amplitudes of the incident acoustic waves. 

It sometimes happens (especially with precompression blades) that (as indicated in 
figure 3 b )  the nearly normal shocks appear a t  the trailing edges rather than a t  the 
leading edges of the blades. But since the region upstream of the Mach waves eman- 
ating from the trailing edges (see figure 3 b )  would be unaffected by any motion that 
occurs downstream of these waves if the mean flow were completely supersonic, we 
can certainly use the semi-infinite flat-plate model illustrated in figure 4 to predict the 
flow everywhere upstream of normal shocks. Consequently, the procedure described 
above can also be used to calculate the unsteady flow even when the strong shocks 
appear a t  the trailing edges of the blades. We shall, however, consider only the case 
where the shocks are at the leading edges. 

The calculated pressure distributions are discussed in $5.1. The solutions in the 
subsonic region differ in a number of important respects from those for completely 
subsonic or completely supersonic flows. This difference is caused by the in-passage 
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shocks. They affect the surface pressure distributions in the subsonic region by 
reflecting and transmitting the pressure waves generated by the blade motion. (The 
pressure waves generated in the downstream region are reflected but not transmitted 
while the converse is true for those generated upstream.) The impingement of these 
pressure disturbances also causes changes in shock curvature that result in the emis- 
sion of downstream-propagating vorticity waves. However, it  is shown in $3.2 that 
these waves produce no real upwash velocity at the blades and therefore have no 
direct effect on the blade surface forces. 

An important consequence of these phenomena is that, unlike the subsonic case, it 
is possible in the present problem to impose a Kutta condition a t  the trailing edge 
without causing the pressure to have a singularity at some other point. In  fact, the 
physical process whereby the flow is able to satisfy the Kutta condition is not the 
same in the present problem as it is in a subsonic flow but is connected with 
the shedding of vorticity by the oscillating shock waves and, as indicated in $4.1, 
the change in circulation caused by the motion of the shock footprints on blades. 

In $4.2 the integrated surface forces are used to study the stability of the cascade. 
It is shown that there is, in addition to the interactions discussed above, another way 
in which the shock waves can influence the blade forces. The portion of these forces 
arising from this interaction bears an interesting relation to the circulation about the 
blades. 

Unlike the previous analyses for completely supersonic cascades the present results 
predict the occurrence of a supersonic bending flutter: a phenomenon which has 
recently been observed in aircraft-engine fans and compressors. The analysis even 
correctly predicts the frequency a t  which this type of flutter occurs. 

2. Formulation 
We suppose that all lengths are non-dimensionalized by the blade chord c and that 

the time t is non-dimensionalized with respect to c divided by Bl, t,he unperturbed 
velocity of the supersonic stream (measured relative to the blades). The pressure 
fluctuation p' is non-dimensionalized by pl, the density of the undisturbed supersonic 
stream, multiplied by 92; and all fluctuating velocities are non-dimensionalized by ax. 

Since the problem is linear, all motion induced by the harmonic oscillations of the 
blade must also have harmonic time dependence. Upstream of the shock waves this 
motion is determined by the velocity potential 

where w1 = wcJBl is twice the reduced frequency based on the supersonic velocity 
and the angular frequency w of the motion and a, is governed by the moving-medium 
reduced wave equation 

where Ml = Bl/al > 
flow (based on a,, 

1 is the undisturbed free-stream Mach number of the supersonic 
the undisturbed free-stream speed of sound in this region), 
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PI = (M!  - l)i and k, = w, Ml/bf. Once the velocity potential's amplitude @, is known, 
the amplitudes 

of the pressure fluctuation p;  and the upwash and axial velocity fluctuations v1 and 
u,, respectively, can be determined from the relations 

and 

by differentiation. 
The equations governing the flow downstream of the shock waves are obtained by 

linearizing the inviscid non-heat-conducting continuity and momentum equations 
about p2, u2 and e2, the density, speed of sound and mean flow velocity of the un- 
disturbed subsonic stream relative to the blades (rather than about p,, a, and el). 
But since conservation of mass across the steady shock waves requires that p, and 
el be related to the corresponding quantities upstream of the shock by p1el = p2e2 
we can write the non-dimensional linearized equations for the dimensionless subsonic 
pressure and velocity fluctuations p i  and u2 as 

Pl = p;exp(iw,t)., & = v,exp(iw,t), U, = u1 exp(iw,t) (2.3) 

v, = m1py, u, = a q p x  (2.4) 

(2.5) PI = (iw, - apx) Ql 

where M2 3 e2/u2 < 1 is the mean steady-flow Mach number downstream of the shock, 
which (Shapiro 1953, p. 117) is related to Ml by 

where p = c&, is the ratio of specific heats. 
Since the downstream flow is vortical, we cannot assume that the velocity and 

pressure are determined from a single velocity potential in this region. But the splitting 
theorem (Goldstein 1976, p. 220) guarantees that the velocity can always be decom- 
posed into the sum u2 = u[+ uf of an irrotational (V x ui = 0) and a solenoidal 
(V. uf = 0 )  part in such a way that 

(<-+-)u:=o. ea a 
e at ax 

Then since uf does not contribute to either of (2.6a, b )  the pressure and the part of 
the velocity represented by ui can be determined from a velocity potential which 
satisfies a wave equation in the same fashion as in the irrotational supersonic region 
while the component uf can be determined from a stream function. Consequently, 
there exist a velocity potential #2(x, y ,  t) = 02(z, y )  exp( - io, t )  and a stream function 

(2.8) 

which determine the amplitudes of the pressure and upwash and axial velocity 
fluctuations 

by the relations 

@&z, y ,  t)  = Y&, Y )  exp( - iolt), 

Pz = p i  exp(iwlt), V, = v2 exp(iw, t ) ,  U2 = u2 exp(iw, t )  (2-9) 

8 @ 2  ayr2 a@ 2 a ~ ,  
2 -  ax ay ' 2 -  ay ax P2 = ( i o 2 - 2 )  aJ2, u - - +- (2.10) 
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and satisfy the equations 

and 

( 2 . 1 1 )  

( 2 . 1 2 )  

where p2 = (1 - Mi)$, k, = w2 M2//3: and w2 = wc/9Y2 is the reduced frequency based 
on the mean velocity @2 of the subsonic region. 

As already indicated, the blades can be replaced by flat plates oscillating harmoni- 
cally about their mean positions y = ns, (n- l)st < x < s t (n-  1)  + 1 (n = 0, & 1, 
f 2, . . .) (see figure 3a).  The unsbeady wakes can, to the same order of approximation, 
be replaced by vortex sheets emanating from the trailing edges of the blades and 
lying along the lines y = ns, x > st(n - 1 )  + 1 (n = 0, & 1,  f 2, . . . ). The mean shock- 
wave positions are along the line segments x = nst, sn < y < ns + s (n = 0, & 1,  & 2,  . . .). 
To the order of approximation of the analysis, the boundary conditions on the blades 
and jump conditions across the shocks and wakes can be transferred to the mean 
position of these surfaces. Thus since, as shown by Lane (1956), we are required for the 
purpose of studying flutter to consider only motions in which all blades oscillate 
harmonically with the same amplitude and a constant but arbitrary interblade phase 
angle u, it  follows that 

V ( x  + nst, ns + y )  = eino V(x ,  y )  for 2 ,  . . . ), 
(2.13) 

where V denotes either V, or V, depending on which is appropriate for the region of the 
blade under consideration and + 0 denotes the limit as y +  0 from above while - 0 
denotes the limit as y - +  0 through negative values. This equation determines the 
upwash velocity on the nth blade in terms ofthat on the zeroth blade while the upwash 
velocity on the zeroth blade is related to its displacement W,exp( - iw,t) by 

- st < x < 1 - S+, y = & 0 ( n  = 0, k 1, 

O<Z<I--St, y = + o ,  
-s+ < x < 1 -s+, y = -0 ,  

~ ( x ,  y )  = - ( i q - ; )  ~ , ( x )  for y = + o ,  -8t < x < 0. (2.15) 

The blades can, in general, be undergoing any type of undulation. But in order to 
simplify the presentation we shall restrict our attention to the case usually considered 
in turbomachine flutter calculations wherein each incremental blade section is under- 
going a rigid-body motion. Then we can write 

W, E 11, + A,(x - do), (2.16) 

where H,, A ,  and do are constants. H, represents the amplitude of a vertical displace- 
ment of the point x = d,  while A, is the amplitude of the angular displacement about 
this point. 

The pressure and upwash velocity must be continuous across the wake. But in order 
to satisfy the Kutta condition at  the trailing edge we must, in general, allow the axial 
velocity to be discontinuous. 

The flow in the supersonic region is connected to that in the subsonic region by the 
jump conditions across the shock waves. These conditions are given by equations 
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(A2) and (A3) of appendix A. Hence it follows from (2.3), (2.8), (2.9) and (2.10) that 

(2.17) 

for x = ns, sn < y < ( n + l ) s  (n = 0, f 1,  & 2, ...). These equations relate the pres- 
sure, axial velocity and vorticity downstream of the shock to the pressure and axial 
velocity upstream. Finally, we must require that there be only outward-propagating 
disturbances at large distances from the cascade. Then no disturbance will propagate 
upstream in the supersonic region ahead of the cascade (relative to the blade-fixed 
co-ordinates). This completes the specificat,ion of the problem. 

3. Analytical solution 
Before constructing the solution we assume, as is usually done, that there is a small 

amount of damping in the problem. This amounts to requiring that k, and k, [which 
appear in (2.2) and (2.11)] have small positive imaginary parts, say el and E,. At the 
end of the problem the damping will be set equal to zero. This allows us to replace 
the outgoing-wave boundary conditions at infinity by conditions of boundedness. 

The boundary condition (2.1 3) requires that the solution possess a certain blade-to- 
blade periodicity but we shall require it to satisfy the stronger periodicity condition 

@(x+ns+,ns+y) = eincO(x, y ) ,  (3.1) 

where 0 can denote any of the physical variables V,, 5, Pl, P,, etc. Once it has been 
shown that such a solution can be made to satisfy all the boundary conditions in the 
problem, the Ansutz will be justified. 

Since disturbances cannot propagate upstream in a supersonic flow, it is easy to 
see from figure 3 that the fluid in region 1 cannot be affected by anything that happens 
at or behind the shock waves. Hence we can determine the solution in this region 
independently of the one in region 2. Then, once this solution has been found, the 
pressure and axial velocity downstream of the shock wave can be obtained from 
(2.17) and (2.18). These quantities together with the remaining boundary conditions 
are just sufficient to determine the flow everywhere in region 2. 

3.1. Solution in supersonic region 

We first determine the solution in the supersonic region. To this end we notice that, 
since the flow in this region is uninfluenced by anything that happens downstream 
of the shock waves, the problem can be replaced by the equivalent problem of an 
oscillating cascade of semi-infinite blades in a completely supersonic flow. The con- 
figuration is illustrated in figure 4. The reason for doing this is t,hat the new problem 
can be solved explicitly by using the Wiener-Hopf technique. In  fact Carlson & Heins 
(1  947) carried out an analogous calculation for the scattering of electromagnetic waves 
while Mani & Horvay (1970) calculated the reflexion of an acoustic wave by a semi- 
infinite cascade in a subsonic flow. (Although the present analysis is formally similar 
to these previous studies, differences in the choice of branch cuts and integration 
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contours cause marked differences in t'he subtler aspects of the solution that must 
be treated in ways that are by no means straightforwaid.) 

The function O1 of (2.2) is essentially the sum of the disturbance fields due to the 
individual blades. We therefore attempt to represent it as a superposition 

co 
Ql = (Din) 

n = - m  

of the contributions from the individual blades. Then since (2.2) possesses a separation- 
of-variables solution exp(-i[(a--M,kl)x-Ply,y]), where y1 = (aZ-k$, it is renson- 
able to express @ia) as the Fourier integral 

(3.3) 

where we have put x ,  = x-ns+ and y, = y- ns (n = 0, 5 1, & 2, . , .) and in order to 
ensure that no waves propagate upstream and that the solution remain bounded a t  
infinity (i.e. only outward-propagating waves exist) we have chosen the integration 
contour in the complex a plane and the branch cut for the square root y1 in the manner 
indicated in figure 5. The height S of this contour above the real axis is assumed to be 
a quantity of the order of the damping el but otherwise is as yet unspecified. 

The signum function is defined as usual by sgny = & 1 for y 2 0 and its insertion 
causes Ql to have the jump discontinuity 

[ a 1 ( x ) l n  = lim [Ql(z, ns + e) - Ql(x, ns - s)] = [@jn)(x)In 
B - 0  

(3.4) 

across the line y = ns passing through the nth blade. The introduction of this dis- 
continuity will cause the upwash velocity V, = aQl/ay to be continuous everywhere. 

Now it is easy to verify that the solution (3.2) will satisfy the periodicity condition 
(3.1) if we take 

Inserting this into (3.3) and using the result in (3.2) shows that 

fil)(a) = e inc fd l ) (a )  for n = 0, & 1,  5 2, ... . (3.5) 

fd')(a)A,(& y)exp{ -i(a - ~ 1 ~ 1 ) % } d %  (3.6) 
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where we have put Zl = 2 + st and 
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m - 
AI(4  Y) = 2 (sgn Yn) exp{iCNa + sta - stJ4 &I) +Pl~llY,Il}. (3.7) 

n=-oo 

We now set S = J ! E , .  Then since Im(a-  Mlkl) = 0 and Imy, > 0 for 6 = M,el, 
-00 < Rea  < 00, it follows that ~exp{i[(a-1Mlk1)nst+~,yl~y,~]}~ < 1 everywhere 
on the contour of inkgation in (3.6). We can therefore use the geometric series 

a 

n=O 
C 2" = (1-2) -1  for 121 < 1 

to sum the series in (3.7) and thereby obtain 

where A+ = ~ ( a - M l k l s t + a s t ~ ~ l y l s ) .  
The upwash velocity can now be written as 

m + ia,Ml 
K ( x ,  y) = -l = - 1 fdl ) (a)~,(a,  y)exp{-i(a-M1k1)2.,}da, (3.9) 

aY 2n -w++ic,M, 

(3.10) 

Equations (3.7) and (3.10) show that this quantity is indeed continuous everywhere. 
However, we must also require that the remaining physical quantities be continuous 
along the lines y = ns, - 00 < x < (n - 1) s+ (n = 0, ? 1, & 2, . . . ) that extend forward 
of the leading edges of the blades. This will occur if Ql is continuous across these lines. 
Moreover, the fact that Ql satisfies the periodicity condition (3.1) ensures that i t  will 
be continuous across all of these lines if it is continuous across the line y = 0, 
-00 < x < -st passing through the n = 0 blade. It follows from (3.4) and (3.5) that 
this will occur if 

OD i- *€,MI 
fdl)(a) exp{ - i(a - Mlk,)2:,}da = 0 for Zl < 0. (3.11) 's 2n -oo++is,M, 

The solution now satisfies all the boundary conditions except those imposed on the 
upwash a t  the blade surface. The fact that V, satisfies condition (3.1) again ensures 
that (2.13) will be satisfied. Hence it is only necessary to require that (2.15) be satisfied. 
And since we are a t  liberty to choose the upwash velocity on the line segment y = 0, 
x > 0 arbitrarily, we find from (3.9) that 

Thus if we can determine the functionfdl)(a) that satisfies these two equations we shall 
have succeeded in constructing the proper solution for region 1.  

Equations (3.11) and (3.12) constitute a set of dual integral equations which can 
be solved for fdl)(a) by the Wiener-Hopf technique. The procedure is outlined in 
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appendix B. The result is given by equation (B 10). When this is substituted into 
(3.6) we obtain 

iw, A ,  ) d a ,  (3.13) 
a-HI kl +is, 

where 

so is a small positive number which can be put equal to zero after the contour integral 
has been evaluated and ~ f ( a )  are non-zero analytic functions that have algebraic 
behaviour at infinity in the upper/lower half-planes and are determined by the 
functional equation (B 4). The latter quantities are calculated in appendix C [KT is 
given by (C 5)-(C 7) and K$ can then be determined from (B 4) and (C l)]. 

This completes the solution to the problem in region 1. The pressure and velocity 
can be determined at  any point of region 1 by substituting (3.13) into (2.4) and (2.5) 
and carrying out the indicated differentiations. 

We need to know the pressure P,(O, y) and axial velocity U,(O, y) (for 0 < y < s) on 
the supersonic side of the shock in order to obtain the solution in the subsonic region. 
Since these quantities are calculated by differentiating (3.13) with respect to x their 
integrands will contain the function A,(a, Y ) / K $ ( ~ )  = Al(a, Y ) / [ K ~ ( ~ ,  O ) K ~ ( E ) ] ,  and 
since this fiinction depends on y1 we might anticipate that it will have the same 
branch-cut singularity as yl. But in appendix C we show that no such singularities can 
occur. The same arguments can be used to show that the singularities of A,(a, y) are 
at most poles. Hence we can conclude that the singularities of the integrands in the 
equations for Pl and U, are also a t  most poles. The residue theorem can therefore be 
used to evaluate the integrals. Since x = 0 and y < s on the surface of the shock and 
st > ills for subsonic axial velocity, it  is easy to show that the integrands will vanish 
exponentially fast as a 4 00 in the lower half-plane and become unbounded as a 4 00 

in the upper half-plane. Hence we must complete the contour with a large semicircle 
in the lower half-plane. The value of the integrals will then be equal to - 2ni times 
the sum of the residues at their poles in the lower half a plane. These poles occur at 
the infinite set of points A:) (n = 0, f 1,  f 2, ...) defined in (C 2) and a t  the point 
a = M, k, - is,. After the contour integrals have been evaluated we can put E, = so = 0. 
When these operations have been carried out we find that the pressure and axial 
velocity just upstream of the shock are given by 

where 
Q,, = Q;t+Q,,  R, = R, f+R, ,  (3.16) 
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(3.18) 

(3.19) 
eiu cos wy - cos w(s  - y) 

w sin u s  
ist eia COB wy 

w sin ws ' 
9 f,(y;w) = f,(y; = 

By using the asymptotic representation (C8) for KT it is easy to show that Q, = 
O(n-,) and R, = O(n-2) as n+m. Hence the infinite series in (3.14) and (3.15) are 
absolutely convergent and as a result represent continuous functions. 

The pressure P,(z, 0 + ) on the portion - S+ < x < 0 of the airfoil surface is evaluated 
in appendix D. We are now ready to calculate the solution in the subsonic region, 

3.2. Solution in subsonic region 
The boiindaries of region 2 are sketched in figure 6. The pressure and axial velocity 
are specified on the shocks by (2.17), (2.18) and (3.14)-(3.19) while the upwash velocity 
on the blade surfaces is given by (2.13), (2.14) and (2.16). We must also require that 
the pressure and upwash velocity be continuous across the wakes and that only 
outward-propagating disturbances exist far downstream. Finally we make the solu- 
tion unique by requiring that it satisfies a Kutta condition a t  the trailing edges of the 
blades. 

Equation (2.12) can be integrated immediately to obtain 

yf,(G Y )  = Q(y) exp(iw24 

exp(iw,x) I Q(s(n + 1 ) )  sinh w,(y - ns) + Q(ns) sinh 02[s(n + 1) - y] 
sinh w2s 

exp(iw,x) 
Q(s(n+ l))sinhw,(y-ns)+Q(ns)sinhw,[s(n+ 1)-y] 

sinh 0, s + 
for ns < y < ( n + l ) s  (n = 0, 51, + _ 2  ,... ), (3.20) 

where Q(y) is an as yet arbitrary function of y. Notice that Y, will satisfy the peri- 
odicity condition (3.1) only if we require that 

Q(y+ns) = exp{in(v-w,s+))Q(y) for 0 < y < s (n = 0, & 1, 2, ...). 
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A - 
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acoustic 
field - 

Upwash velocity specified n =  I 
A "  ?/2 < c2 

c 

M2< 1 - ----- - r 2  

't- Wake n=O 

n =  1 
FIGURE 7. Equivalent problem for subsonic cascade. 

Then it is easy to see from (2.10) that the (reduced) velocity potential 

R(s(.n + 1)) cosh w2(y - ns) - R(ns) cosh w2[s(n + 1 )  - y ]  
i sinh w2s 

exp(iw,x) 

will satisfy the wave equation (2.11) and the periocity condition (3.1) (and have 
outgoing-wave behaviour a t  downstream infinity) while producing the same velocity 
and pressure fields as the second term in (3.20). Hence we can always suppose that the 
effect of that term has been incorporated into a2 and, consequently, that Y, is given 
by the first term in (3.20). But this quantity is identically zero along the lines y = ns 
(n = 0, & 1, & 2, ...). Hence it follows fIom (2.10) that the vortical solution (which is 
determined by Y2) has zero upwash velocity on the blades, has no jump in pressure or 
upwash velocity across the wakes, and in fact makes no contribution to the pressure 
field a t  any point of the flow. It therefore follows from (2.14) and (2.15) that it will 
neither contribute to the boundary conditions on the blades nor the jump conditions 
across the wakes and consequently that these conditions must be satisfied entirely by 
the acoustic portion of the solution (which is determined by Q2). 

We can construct, a solution to the wave equation (2.11) that will satisfy the upwash 
boundary condition given by (2.13), (2.14) and (2.161, the correct jump conditions 
across the wake and the radiation condition a t  downstream infinity and still retain 
enough arbitrariness to satisfy the remaining boundary condition on the shock waves 
by considering the cascade of semi-infinite flat plates shown in figure 7. The plates 
now extend to infinity in the upstream direction and the mean flow is assumed to be 
uniform a t  the downstream subsonic Mach number ill2. 

The desired solution is a composite of the outgoing-wave solution @.j2) that satisfies 
the upwash boundary conditions (2.13), (2.14) and (2.16) everywhere on the plates 
(together with the correct wake jump conditions and trailing-edge Kutta condition) 
and a solution O.jl) that has zero upwash velocity on the plates but has an arbitrarily 
specified downstream-propagating wave field far upstream from the trailing edge. 
We of course require that the latter solution also satisfies the Kutta condition, the 
wake jump condition and the radiation condition a t  downstream infinity and that its 
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upstream incident wave field satisfies the periodicity condition (3.1). The composite 
solution clearly satisfies all the conditions imposed on the subsonic potential except 
the ones on the shock waves. But we shall show subsequently that the upstream wave 
field can be so adjusted that these conditions are also satisfied. 

The second portion CDP) of the composite solution has, in effect, already been found 
by Mani & Horvay (1970). Their results imply 

where 2, = x+st - l ,  

A% = ~ ( r r + M , k , s t + a s t ) + s ~ , y , / 2 i ,  (3.23) 

T/$ 3 -H,kg f Ad2), (3.24) 

A,(,) = i[(nn/sPz)a- k2,]4, (3.25) 

- 8, < 8, < 6, = Im k, and y, = (a2 - k$)4 with the branch of the square roots chosen 
in the manner indicated in figure 8. The B, are the amplitudes of the incident illfinite- 
duct waves [exp (i71;tx)I cos (nnyls) and are, a t  this point, arbitrary. Finally, the 
function ~;(a) is analytic in the lower half-plane with algebraic behaviour at infinity 
and arises from the factorization 

of the kernel function -(iM,(a,y)/ay),=o/(a+k2/M2) in the same way that K; arose 
in the supersonic problem of Q 3.1. It is given in infinite-product form by equation 
(E 1). When x < 1 -st the second term in the summ.and of (3.21) merely represents 
the reflected waves produced by the impingement of the incident wave 

[exp i q t  x] cos (nnyls)  
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on the open end of the cascade. In  fact, as we shall see below, it can be expressed 
entirely in terms of the upstream-propagating waves [exp iq;s] cos (nmy/s). 

The portion @i2) of @, can be obtained by a procedure that is in its general aspects 
the same as that used to obtain the supersonic solution and in its detailed aspects 
similar to the Mani-Horvay (1970) procedure that was used to obtain Oil). We there- 
fore again give only the final result, which can be written as 

( u p + a + M 2 k 2 - 4  iw, A ,  )&a, (3.27) 

where 
W [K$ ( - 4- k, + k o ) ] ’ )  D!“’ = Ol[H0 +A,( 1 - 8’ -do) ]  + iA, 2 + w1 

(w, ~ $ ( - M ~ k ~ + i € , )  ’ 

K$ is given by equation (E 5 )  and, as before, e, > M,e, is a small positive constant that 
can be put equal to zero after the contour integrals have been evaluated. This result 
should be compared with equation (3.13) for the supersonic region. 

We must now prove that we can adjust the function Q in (3.20) and the constants 
B, in (3.21) to make 

@&, y )  = @i”(x, y )  + @PYX, Y )  (3.28) 

and Y, satisfy the boundary conditions (2.17) and (2.18). But since, as in the super- 
sonic case, the singularities of the integrand in (3.21) are all poles, we can use the residue 
theorem to evaluate the integral. For x2 < 0 the contour must be closed in the upper 
half-plane, so that inserting (3.26) and (3.22) into (3.21) and applying the residue 
theorem yields 

for 9, < 0, 0 < y < 8, (3.29) 
where 

On the other hand, since we can require that Y, vanishes at y = 0 and s, Q(y) can be 
expanded in an absolutely convergent sine series to obtain 

m 

n = l  
exp(iw,x) for 0 < y < s. (3.30) 

It is now clear that substituting this equation together with (3.28) and (3.29) into 
(2.10) and inserting the results in the boundary conditions (2.17) and (2.18) we obtain 
expressions which have the form of Fourier sine and cosine series with unknown 
coefficients (which are the B, and b,) equated to known functions of y .  Then since 
the sines and cosines both form a complete set on the interval (0, s), this shows that 
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(3.27)-(3.30) caa be made to satisfy (2.17) and (2.18). I n  fact, we can evaluate the 
contour integral in (3.27) as was done above to obtain 

where 

andf, and f 2  are given by (3.19). Then since 

and 
(3.32) 

inserting these results together with (3.14) and (3.15) into the boundary conditions 
(2.17) and (2.18), exploiting the orthogonality of the sines and cosines on (0,s) and 
finally eliminating the b, from the result we obtain 

m 
- B,a$ + a; exp{ - iq;( 1 - st)} x B, K,, ,, 2 Fn - 

s 1 + an,, m=O 
(3.33) 

where a$ I [AL2)I2 k 2M2k,hd2) + (k,/M1)2 and the inhomogeneous term Fa is given in 
appendix F. 

4. Discussion and results 
4.1. Surface pressure distributions 

Once (3.33) has been solved for the B,, (3.29), (3.31) and (3.32) can be used to calculate 
the pressure on the subsonic portion of the upper surface of the n = 0 blade and, in 
view of (3.1), on the portion of the lower surface lying between x = - st and x = 1 - 2s+. 
Equations (G 1) and (G 2) can be used to calculate the pressure on the remainder of 
the lower surface. 

Since the second term in (3.29) represents the upstream-propagating waves resulting 
from the reflexion of the incident acoustic field B, exp(iq,+x) cos (nny/s) by the back 
end of the cascade, the infinite sum in (3.33) must represent the effect of these re- 
flexions in that equation. But since (except perhaps at  the in-passage duct resonance 
condition) most of these reflected waves will be evanescent and since evanescent 
waves usually decay quite rapidly in a duct, there should be at most one or two terms 
that contribute significantly to the sum in (3.33). In  fact, the summation can often be 
neglected entirely, in which case (3.33) will yield an explicit solution for the B,. 

The calculated surface pressure amplitudes (non-dimensionalized by p1 %:Ao) are 
shown in figures 9-14. For simplicity we present only results for a single cascade 
configuration undergoing a pure torsional oscillation about the centre of the blade. 
The stagger angle is 60" and the solidity is 1.3 for this cascade. But even with these 
conditions fixed, the pressure distributions depend on a number of parameters and 
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FIGURE 9. Non-dimensionalized surface pressure amplitudes acting on a cascade undergoing a 
pure pitching oscillation about the centre of the blades. Stagger angle = 60'; solidity = 1.3; 
interblade phase angle Q = 0; reduced frequency +wl = 0.25. (a) In-phase component (real part) 
of dimensionless pressure amplitude acting on upper surface. (b)  Out-of-phase component 
(imaginary part) of dimensionless pressure amplitude acting on upper surface. (c )  In-phase com- 
ponent (real part) of dimensionless pressure amplitude acting on lower surface. (d) Out-of-phase 
component (imaginary part) of dimensionless pressure amplitude acting on lower surface. 
--_- 9 M 1 -  - 1.2; --- ,MI = 1.4; - , MI = 1.6; - * - ,  MI = 1.8. 
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FIQURE 10. Non-dimensional surface pressure amplitudes acting on a cascade undergoing a 
pure pitching oscillation about the centre of the blades. Stagger angle = 60' ; solidity = 1.3 ; 
interblade phase angle Q = 0; reduced frequency +u1 = 0.5. (a)-@) and curves as in figure 9. 
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FIGURE 11. Non-dimensional surface pressure amplitudes acting on a cascade undergoing a pure 
pitching oscillation about the centre of the blades. Stagger angle = 60'; solidity = 1.3; inter- 
blade phase angle CT = 0; reduced frequency t w ,  = 1. (a)-@) and curves aa in figure 9. 
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FIQURE 12. Non-dimensional surface pressure amplitudes acting on a cascade undergoing a pure 
pitching oscillation about the centre of the blades. Stagger angle = 60"; solidity = 1.3; inter- 
h l d e  p h m  angle a = tn; reduced frequency &dl = 0.5. (a)-(d) and curves aa in figure 9. 
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FIGURE 13. Non-dimensional surface pressure amplitudes acting on a caacade undergoing a pure 
pitching oscillation about the centre of the blades. Stagger angle = 60'; solidity = 1-3; inter- 
blade phase angle u = n; reduced frequency & = 0.5. (a)-(d) and curves ns in figure 9. 
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FIQIJRE 14. Non-dimensional surface pressure amplitudes acting on a cagcade undergoing a pure 
pitching oscillation about the centre of the blades. Stagger angle = 60'; solidity = 1.3; inter- 
blade phase angle cr = n; reduced frequency tol = 1. (a)-(d) and curves as in figure 9. 
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vary in a complicated fashion as these parameters are changed. Nevertheless, there 
do appear to be certain trends that can be deduced from the results. 

The pressure distributions on the supersonic portion of the blade seem to exhibit the 
simplest behaviour. Notice that they tend to be fairly constant over the entire super- 
sonic region a t  the lower reduced frequencies and higher Mach numbers. Under these 
conditions the pressures are relatively insensitive to the Mach number until MI -+ 1.2. 
Their behaviour then depends to a large extent on the interblade phase angle. When 
u = 0 the overall pressure levels always increase with decreasing Mach number. But 
when u = 7~ this behaviour is exhibited only a t  the lower reduced frequencies. As the 
reduced frequency is increased the supersonic pressure distributions become increas- 
ingly oscillatory. The same trend is observed with an isolated airfoil oscillating in a 
supersonic flow. Finally, it should be pointed out that the pressure distributions agree 
with those obtained by Verdon & McCune (1975) for a completely supersonic cascade. 

Notice that the supersonic surface pressure is determined by a different set of 
equations in each of the regions x 5 -sP1. Nevertheless the results show that it 
always varies smoothly across the boundary of these two regions. Such behaviour is, 
of course, required by the physics of the problem since the pressure on the supersonic 
portion of the blade can only change discontinuously across Mach waves that emanate 
from the leading edges of the blades and extend downstream, while it is clear from 
figure 3 that no such Mach wave can intersect the supersonic portion of the upper 
surface of the blade. 

The in-passage shock waves cause the pressure distributions on the subsonic portion 
of the blades to be considerably different from those that occur in a completely subsonic 
cascade. As indicated in the introduction, these shocks can affect the subsonic flow by 
transmitting and reflecting pressure waves as well as by generating downstream- 
propagating vorticity. Since the disturbances originating in the downstream region 
are reflected but not transmitted while the converse is true for upstream disturbances, 
it is not surprising that the surface pressure variations in the subsonic region are con- 
siderably more complex than those in the supersonic region. However, it again appears 
that certain consistent trends can be detected. Thus in most cases the absolute mag- 
nitude of the pressure on the upper surface appears to  rise as the shock wave is 
approached. This behaviour is more pronounced at the lower reduced frequencies and 
higher Mach numbers. On the other hand, the pressure always takes on a finite value 
a t  the surface of the shock. In  fact, unlike the purely subsonic cascade the pressures 
in the present problem are finite everywhere. However, the low frequency pressure 
amplitudes do show a tendency to become fairly large in the vicinity of the shock 
waves. Naturally the pressure on the upper surface is discontinuous across the shock 
position while that on the lower surface varies continuously across this region. 

At low frequencies the real parts (in-phase components) of the pressures on the 
lower surface tend to be concave upwards while their imaginary parts tend to be 
concave downwards. This trend is masked by the oscillatory character of the solutions 
a t  the higher reduced frequencies. 

As in the supersonic region, the upper surface pressures show a definite penchant 
for increasing with decreasing Mach number when the reduced frequency is low and 
the interblade phase angle is less than 7 ~ .  They also exhibit a tendency to increase in 
complexity as the reduced frequency increases or the interblade phase angle 
approaches 71. 
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Finally, it should be noted that, as required by the Kutta condition, the upper and 
lower surface pressures become equal at the trailing edge. Since pressure signals from 
the trailing edge are now prevented from propagating all the way upstream, the 
physical mechanism that produces this effect is probably somewhat different from the 
one that causes it to occur in completely subsonic flows. Thus if at any instant a large 
gradient is set up because the trailing streamline does not emanate from the trailing 
edge of the blade, there can be no adjustment of the flow in the supersonic region to 
remedy the situation. However, pressure signals can be sent up to the normal shock, 
causing it to emit vorticity waves that change the circulatory flow in the subsonic 
region enough to move the trailing streamline back to the trailing edge of the blade 
and thereby prevent a pressure discontinuity from occurring a t  this point. In  fact, 
since the circulation around the blade is just the line integral of the surface velocity, a 
movement of the shock-blade intersection point by an amount xs(O,t) causes the 
circulation to  change by an amount 

y8 = (@1-*2)x8(0) t )C* (4.1) 

4.2.  Lift and moments: stability of cascade 
The contribution of the unsteady surface pressures to the fluctuating lift or moment 
can be calculated in the usual way by integrating these pressures (or their moments) 
over the surface of the blades. However, in the present problem there is an additional 
contribution to the fluctuating lift or moment that arises directly from the motion of 
the shock wave. Thus, owing to the oscillation of the shock, the length of the upper 
n = 0 blade surface that is in the supersonic region changes continuously by the 
amount x,(O, t )  where, as indicated in appendix A, q ( 0 ,  t )  denotes the dimensionless 
displacement of the shock wave a t  the upper surface of the n = 0 blade. The resulting 
lift force acting on the blade is therefore x8(0, t)[p$O)-pfJ)],  where pio) and pJ0) denote 
the steady pressures in regions 1 and 2. Then since it follows from the harmonic time 
dependence of the problem that ax8/dt = -iwxs, we can use equation (A 1 a )  to 
eliminate xs and thereby show that SS, the amplitude of the shock-induced lift 
fluctuations non-dimensionalized by cpl 9Y;, is given by 

where we have used the steady-state normal-shock relation 

(pp-pjO))/plw I - - 2 B l / [ ( P + l ) M 3  

to eliminate the steady pressures (Shapiro 1953). This force will, of course, produce a 
moment about the point x = do that has dimensionless amplitude do6p,. 

We shall suppose that the equilibrium position of the shock is slightly ahead of the 
leading edge of the upper blade. Then there will be no contribution to the fluctuating 
lift from the motion of its footprint on the lower surface. 

It is worth noting bhat the shock-induced circulation ys, given by (4.1), is related to 
the shock-induced lift fluctuation by 

p l a l  y8 = (p19Y;c98e-iwt). 
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Since the term on the right is just the actual dimensional shock-induced lift force, this 
result will be recognized as the familiar relation that connects the lift and circulation 
in potential flow theory. 

The dimensionless moment coefficient [see 3.1 for description of [ lo] 

A= /'"+ (Z -d , ) [P] ,  &+do% 
-s t  

divided by -A, ,  the instantaneous angle of attack (assumed positive in the clockwise 
direction), is plotted for pure torsional (i.e. pitching) motion about the centre of the 

2 0  F L M  83 
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FIGURE 15. Moment coefficient for pitching motion about centre of blade. (Cascade geometry 
same as in figures 9-14.) 0, (T = 0 ;  0, (T = in; 0 ,  (T = T ;  A ,  (T = in; 0 ,  intermediate values 
of ~7 (i.e. multiples of tn). Reduced frequency Jpl: (a) 0.25; (b)  0 .5 ;  (c) 1. 
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FIGURE 16. Effect of shock-induced moment on torsional stability. 

(a) M ,  = 1.4, ~1 = 0.5. (b )  MI = 1-89 W1 = 1- 

blade (so that do = 8 - S+) in figures 15 (a)-(c). The interblade phase angle is taken as 
a parameter along the curve. The cascade configuration is the same as the one con- 
sidered in the previous section. For torsional motion, the work per cycle (done by the 
flow on the blades) is equal to nAO pl%tIm J2 (Fung 1955). When this quantity is 
positive, the blade receives energy from the flow and thereby becomes unstable. 
Hence the cascade will flutter when Im ( A / - A o )  is negative. Figure 15 shows that 
the blade row is more stable a t  higher reduced frequencies and that the degree of 
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FIGURE 17. Lift coefficient for plunging motion. (Cascade geometry is same aa in figures 9-14.) 
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0 4 u l n  

FIGURE 18. Effect of shock-induced lift on bending stability. MI = 1.4, w1 = 0.5. 

instability usually increases with Mach number. These results are somewhat similar 
to the calculations for a supersonic cascade of Verdon & McCune (1975). However, the 
present results exhibit a greater degree of stability in the sense that the portions of 
the curves extending below the real axis are smaller at any given reduced frequency 
while complete stability a t  any given Mach number (for all values of the interblade 
phase angle) occurs at  a much lower reduced frequency. Not unexpectedly, the response 
curves have a somewhat more complex shape than those for a completely supersonic 
cascade. 

The fact that the present calculation predicts gIeater stability than the completely 
supersonic model (which represents the real flow only at low backpressures) is con- 
sistent with the increase in torsional stability that is found to occur in virtually all 
fans and compressors when the backpressure is increased. 

In  figure 16 the imaginary part of the shock-induced fluctuating moment is com- 
pared with the imaginary part of the total moment. These results are typical in that 
(for all cases considered) the shock-induced moment tends to be destabilizing for 
interblade phase angles in the range 0 < c < $n and stabilizing for interblade phase 
angles outside this range. Instability of the blade always seems to occur in a region 
where the shock-induced moment is destabilizing. In fact, the shock moment usually 
acts to decrease the overall stability of the cascade. Hence it cannot be responsible 
for the increased stability exhibited by the present model (as compared with the 
purely supersonic cascade model). There does not appear to be any consistent Mach 
number effect. 

The dimensionless lift 

[PI, dx + x 
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is plotted in figures 17 (a )  and ( b ) ,  for the case of pure bending (i.e. plungingmotion). 
The geometry of the cascade is the same as before. The figures show that the blades 
become unstable at the lower frequencies (below ijwl N 0.3) and that the degree of 
instability increases with Mach number. Corresponding calculations for the purely 
supersonic cascade (Kurosaka 1974; Verdon & McCune 1975) indicate that the blades 
will always be stable. However, recent Supersonic compressor tests have revealed that 
bending flutter will occur at the higher backpressures whenever $wl is less than 0.3. 

The imaginary part of the shock-induced lift fluctuation is compared with the 
overall lift fluctuation in figure 18. These curves are again typical in that they show 
the shock-induced lift to be primarily stabilizing for interblade phase angles in the 
range 0 < c < in and destabilizing in the range in < c < n. Since the calculations 
indicate that bending flutter always occurs in the latter range it may be possible to 
attribute the bending instability of the blade row to the destabilizing force induced 
by the shock waves. 

5. Concluding remarks 
We have developed a linearized theory for predicting the unsteady flow in supersonic 

cascades containing in-passage shocks. Our model accounts for not only the direct 
shock-induced fluctuating blade forces but also those due to the shock reflected 
pressure waves. The direct shock forces are found to be predominantly destabilizing 
for both pitching and plunging motion and can therefore not be responsible for pro- 
ducing the increase in torsional stability exhibited by the present calculation. How- 
ever, they may be responsible for producing the supersonic bending flutter that has 
been found in recent compressor tests. 

Unlike the case where the flow is everywhere subsonic, it is possible in the present 
problem to impose a Kutta condition at the trailing edge without causing the pressure 
to become infinite at some other point. This may be a reflexion of the fact that the 
physical mechanism that causes the flow to satisfy the Kutta condition is not the 
same as the one that causes this condition to hold in a completely subsonic flow. 

Thanks are due to Jon Kring for carrying out the'numerical computations. The 
authors are indebted to John Caruthers (Detroit Disel Allison) for bringing the 
shock-induced forces to their attention. 

Appendix A 
In  this appendix we derive conditions connecting the flow across the shock waves. 

A convenient starting point is the set of conditions derived by Moore (1954). His 
results can be written as 

I 
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where x,(y, t )  denotes the dimensionless x-direction displacement of the shock waves 
measured from their equilibrium (i.e. steady-state) positions. It is assumed that this 
displacement will be of the same order as the perturbation quantities (pi, pi, u2, etc.). 

Since 
v1 = a+,jay, v2 = a ~ 2 p y - a + z p x ,  a+,lat = -p;-u, 

%/at = - (@Z/@l) (Pi + u2 - a+2/aY)7 

and 

(A 1 c) can be differentiated with respect to time to obtain 

Then substituting in (A 1 a, b )  and using the well-known normal-shock relation (see 
Crocco 1954, p. 111) @2/@l = [(p- i)M?+2]/[(p+ l )M3 together with (2.7) yields 

On the other hand (A 1 a, b )  imply 

for ~ = n s ,  s n < y < ( n f l ) s  ( n = O , _ t 1 , ? 2  ,... ). (A3) 

Appendix B 
In  this appendix we use the Wiener-Hopf method to solve the dual integral equa- 

tions (3.11) and (3.12). It is shown in Noble (1958, pp. 220ff.) that these equations 
are equivalent to the functional equations 

X+(a)~ , (a ,  0) = X-(a )  +I?+(&) for -co < R e a  < 00, I m a  = e1M1, (B 1 )  

where X+(a)  is a function which is analytic in the upper half-plane I m a  > Mlel, 
X-(a )  is analytic in the lower half-plane Im a < MI€,, 

and 
fdl)(a) = X+(a)  for -co < R e a  < 00, I m a  = elMl (B 2) 

I?+(a) = exp{i(a-Mlkl)d,) y - i q  W,(d,-s+)dd,. (B 3) 
!ow (all 1 

Equation (B 1) is solved by first factorizing K ~ ( ~ , O )  into the product 

K ~ ( C I ,  0) = ~ l f ( a ) / ~ ; ( a ) ,  I m a  = elMl,  (B 4) 
where K?(CL) is analytic and non-zero in the upper half-plane and remains bounded as 
a --f co while K T ( ~ )  is analytic and non-zero in the lower half-plane and is bounded as 
a-tco in this region. We next factorize ~,(a)F+(a) into the difference 

G+(a) - G-(a) = K T ( ~ )  F+(a), Im a = e1X1, (B 5 )  

where G+(a) is analytic and has algebraic behaviour a t  infinity in the upper half-plane 
while G-(a) is analytic and has algebraic behaviour a t  infinity in the lower half-plane. 
Then (B 1) becomes 

X , ( a ) ~ l + ( a ) - G + ( a )  = X _ ( a ) ~ , ( a ) - G - ( a ) ,  -co < R e a  < co, I m a  = e1M1. 



Unsteady $ow in a supersonic cascade 599 

The left-hand side of this result is the boundary value of a function that is analytic in 
the upper half-plane and the right-hand side is the boundary value of a function that 
is analytic in the lower half-plane, so that these two functions are analytic continua- 
tions of one another and together define an entire function. Moreover, by using the 
known relations between the asymptotic expansion for large a of the various Fourier 
transforms and the behaviour of the physical variables near Z, = 0,  it can be shown 
that the latter quantities will remain bounded a t  this point only if the left- and right- 
hand sides of this equation vanish in their appropriate half-planes as a-fco.  Hence 
it follows from Liouville’s theorem that each side must vanish identically and there- 
fore that (B 2) becomes 

I n  order to determine G, from (B 5 ) ,  we must evaluate the integral (B 3). The function 
W, is given by (2.16) for 2, in the range 0 < 2, < st while its definition in the range 
st < Z, will not affect the solution in region 1.  We should therefore define this function 
such that we obtain the simplest possible solution to (B 5 ) .  This will occur when the 
definition (2.16) is extended into the region st < 2,. But this procedure will lead to 
divergent integrals unless we replace the boundary condition (2.16) by the slightly 
modified condition 

fdW) = G+(a)/Kt(a). (B 6) 

w, = [H,+A, ( z -d , ) l exp( - s , f , ) ,  (B 7) 

where 0 < so < 1.  This formula represents an oscillatory surface motion that slowly 
decays as x+co. 

At the end of the problem, we can put so = 0 and the final solution will not diverge 
as long as we restrict our attention to region 1.  This procedure allows us to locate the 
poles on the correct side of the integration contour. 

Thus inserting (B 7)  into (B 3) and carrying out the integration shows that 

iA, + OJH, - A,(st + do)] iw, A ,  
a - M,k, + is, + (a - Jl, k, + is,)2 F+(a) = 

and on inserting this into (B 5 )  we find by inspection that 

where 

and 

Equation (B 6) can therefore be written as 

[ K y  ( X ) ]  ’ Z E  dKT ( X ) / d X .  

Ky(Ml k, - is,) iw ,  A ,  
fdl’ = K1+(.) (a - Jf, k, +is,) (D‘) +a -M, k, +is, 

Appendix C 

(3.10) and carrying out the differentiation shows after some rearrangement that 
I n  this appendix, we solve the functional equation (B4). Substituting (3.8) into 

~,(a, 0 )  = /3,ylsin(/3,y,s)/(2sinA~ sinhy). (C 1) 
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Locus of v.' 

Locus of v, 

FIGURE 19. Approximate locus of roots in complex 01 plane. 

The numerator of this equation has its zeros a t  the points where plyls = n7r for 
n = 0, +. 1, & 2, ... , i.e. a t  the points 

A i l )  = [k;+ (nn/(p1s))2]4 for n = 0, 1, 2, ... . (C 2 )  

But these points all lie below the line Im a = el Ml and hence belong to the lower half- 
plane. We can therefore conclude that the numerator of (C 1 )  is analytic and non-zero 
in the upper half-plane and can as a consequence associate it with ~ l f ( a ) .  

Since the equation immediately below (3.8) shows that replacing y1 by - y1 changes 
A,+ into AT and vice versa, we can see that the denominator of (C 1) remains unchanged 
under this substitution. Hence it depends only on y: = a2 - k2, and consequently is an 
analytic function of a. However, it possesses zeros which lie both above and below the 
line I m a  = e1Ml. I n  order to sort these out, we use the well-known result (basedon 
the Weierstrass factorization formula) 

s i n a = a  fi [ 1 - ( ~ ) ~ ]  
n = l  

to conclude that 
* l  

sin A t  sin A: = A,+ A; n 22 ( A t  - nn) (A, - nn). n=-mn n 
n90 

After some manipulation, this becomes 

where 

(C 5 )  

(C 6) 

~~=r(1)-+-([fn(1)]2-k21)+ st .PI for n = 0 ,  51, + 2 , . . . ,  
d;-  d: 

r21) = (2nn+~,k,st- U ) p ;  

and the branch cut for the square root is the one shown in figure 5.  The loci of the 
points a! = v$ are shown schematically in figure 19. 

The first term in square brackets in (C 3) is a constant. Moreover, it follows from 
figure 19 that t,he second term in square brackets has its zeros a t  points in the lower 
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half-plane while the third term has its zeros in the upper half-plane. Hence we can 
conclude that 

niO 
and 

where ~ ( a )  is an entire function of a that must be chosen in such a way that K: remain 
bounded a t  infinity in the appropriate half-planes. 

In  order to evaluate this function we must first determine the asymptotic expansion 
of q(a) as a-tco. After a rather tedious calculation (following the procedure outlined 
in Noble 1958, p. 128, exercise 3.4) we find that 

Hence, in order to ensure that KT remains bounded as a -t 03 in the lower half-plane 
- T + E  < arga < el we put x = - gia(st-pls) so that 

and as 01 -+ 03 

where 
K T ( ~ )  N ~ , { 1  - e x p { - i [ a ( ~ t - ~ ~ ~ ) + c r - M ~ k ~ s ~ ] ) } ,  

-iexp{+i(u-Mlklst)} I'(l)d: 
K, 5 

2sin[g(cr-~,1c,st)l n"Wvn+(st-pls)* 

Appendix D 
In  this appendix we use the solution (3.13) to calculate the airfoil surface pressure. 

The appropriate equation is obtained by substituting (3.13) into (2.5) and carrying 
out the indicated differentiation. The arguments made in connexion with the shock 
surface pressure can again be used to show that the singularities in the integrand of 
this result are a t  most poles. However, in this case, we find that the integration contour 
must be closed in the upper half-plane when x is in the range -st < x < -spl while 
i t  must be closed in the lower half-plane when x is in the range -spl < x < 0. 

2, . . .) defined 
by (C 5) and (C 6) while those in the lower half-plane occur a t  the same points as those 
in the integrands of the shock surface quantities. Hence, upon using the method of 
residues, we find that 

The poles in the upper half-plane occur a t  the points v,f (n = 0,  & 1, 

where I!; is defined by (C 4)-(C 6), KT is given by (C 7) and [KT(x)]' is defined by 
Similarly, 

W 

Pl(x, 0) = exp(iMlklx) c (Tf exp( - ihd1)x) + T; exp(ihn(1)x)) 
n=O 

- ~ 4 l ~ o $ - ~ o ~ ~ - ~ o ~ l f l ~ ~ ~ ~ , ~ l ~  
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(D 2 )  
- i ~ ,  [G a ~ ~ ~ 1 ~ ~ , ~ 1 0 , ~ + ~ ~ ~ 2 ~ ~ , ~ 1 w , ~ ]  for -s~, < x < 0, 

where 

hi') is defined by (C 2) andf,, f2 and &$ are defined by (3.19) and (3.17). 

T$ sz - [[ k hi1)- (ki/Ml)]/( f hil'-M1kl)]&$, 

Appendix E 
In this appendix we give the infinite-product representations for the factors K$ of 

the subsonic kernel function (3.26). The function K; is given by 

where 
Pi2) = (2nm - cr - M, k2 st)/d,t, 

are analogous to v,i, I'd" and d: for the supersonic solution and 

b = s+[&m - tan-, (sP2/st)] + sP2 In (2sP2/d&). 

The function K.& is given by 

Appendix F 

in the form 
After some algebraic manipulation the inhomogeneous term in (3.33) can be put 

where 

and 



UnsteadyJ lw in a supersonic cascade 603 

Appendix G 
In this appendix we use the solutions (3.21) and (3.27) to obtain an expression for 

the pressure distributions on the portion of the lower n = 0 blade surface lying between 
x = 1 - 2 ~ ~  and x = l-st. It follows from the periodicity condition (3.1) that the 
pressure in this region can be calculated from the pressure on the portion of the lower 
surface of the n = 1 blade that lies between x = 1 - S+ and z = 1. We can again use 
the residue theorem to evaluate the integrals but here the integrands must each be 
divided into two terms and the contours must be closed in the lower half-plane for one 
of these and the upper half-plane for the other. Applying (3.1) to the results of these 
evaluations then yields 

exp{i(m+ - 4) 
2 + 

x (exp{ - i(a + mi-)} - exp( - iq,+ st)) 
m 

x 2 Z; (A,(,)) exp{ - i(a; + M, k,) (x - 1 + 2 .~7)  
m = - m  

for 1 - 2 ~ ~  < x < 1-st ( G I )  
and 

iw, A,  
a; + M, k, 

m 
- e-2u - 

. 
Z, S L ( M ,  k,) exp{ - i(a; + M, k,) (2, + st)} 

n=O 

+: H, exp(iv32) -ol{2iA,+o,[H,+A,(~-do)l) 
n = O  [exp{i(a-r;st+nn)}- 11 

cot (M,w,s) 
Mz wz 

X 

where 

for 1 - 2st < x < 1 -st, 
a cot(M,w,s) 

-io ’ A o - 
Z8u2( Mzw2 

and I’g), d i  and af are given by (E 2)-(E 4). 
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